Real-time Reduced Large-Deformation Models and Distributed Contact for Computer Graphics and Haptics PhD Thesis
نویسندگان
چکیده
This thesis presents novel algorithms for deformable dynamics, collision detection and contact resolution between reduced nonlinear 3D deformable objects, for use in interactive computer graphics and haptics. The deformable models investigated are elastic, volumetric, and capable of undergoing large deformations. Each mesh vertex of a general 3D deformable object has three degrees of freedom. Noninteractive computation times result when simulating large-deformation dynamics of such unreduced systems (assuming non-trivial geometry). Reduced deformable objects are obtained by substituting these general degrees of freedom for a much smaller appropriately defined set of reduced degrees of freedom. This dimensionality reduction can enable much faster simulation times, with some loss of simulation accuracy. Many interesting objects can be well approximated by reduced deformations: swaying bridges, plants, tall buildings, mechanical components (hoses, wires), and human tissue (thigh passively deforming after a jump). The reduced deformable degrees of freedom need to be defined carefully so that they support “typical” large deformations. We present an automatic degree-of-freedom selection algorithm, and an algorithm for fast runtime simulation of the resulting reduced nonlinear dynamics for geometrically nonlinear deformable models. Real-time deformable objects can be used to provide multi-sensory feedback in emerging real-time applications, such as 6-DOF (force and torque) haptic rendering. It is challenging to perform collision detection and compute contact forces and torques between geometrically complex objects at haptic rates. This thesis presents a CPU-based approach to simulate distributed contact between two (rigid or reduced-deformable) objects with complex geometry. Penalty-based contact forces are resolved using a multi-resolution point-based representation for one object, and a signed-distance field for the other. Our algorithm can adapt the contact force accuracy to both the difficulty of the current contact configuration and the speed of the particular computer. Reduced-deformed distance fields are proposed to support contact between reduced deformable objects. We also expose several important algorithmic details essential for stable and robust 6-DOF haptic rendering. Applications of our work include computer animation and games (including game haptics), CAD/CAM (virtual prototyping), and interactive virtual medicine.
منابع مشابه
Real-time Reduced Large-Deformation Models and Distributed Contact for Computer Graphics and Haptics
This thesis presents novel algorithms for deformable dynamics, collision detection and contact resolution between reduced nonlinear 3D deformable objects, for use in interactive computer graphics and haptics. The deformable models investigated are elastic, volumetric, and capable of undergoing large deformations. Each mesh vertex of a general 3D deformable object has three degrees of freedom. N...
متن کاملVirtual Environments for Medical Training: Graphic and Haptic Simulation of Tool-Tissue Interactions
For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in pa...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملVirtual Clay: Haptics-Based Deformable Solids of Arbitrary Topology
This paper presents Virtual Clay as a novel, interactive, dynamic, haptics-based deformable solid of arbitrary topology. Our Virtual Clay methodology is a unique, powerful visual modeling paradigm which is founded upon the integration of (1) deformable models, (2) free-form, spline-based solids, (3) procedural subdivision solids of arbitrary topology, and (4) dynamic objects governed by physica...
متن کاملHardware-based Parallel Computing for Real-time Simulation of Soft-object Deformation HARDWARE-BASED PARALLEL COMPUTING FOR REAL-TIME SIMULATION OF SOFT-OBJECT DEFORMATION
In the last two decades there has been an increasing interest in the field of haptics science. Real-time simulation of haptic interaction with non-rigid deformable object/tissue is computationally demanding. The computational bottleneck in finiteelement (FE) modeling of deformable objects is in solving a large but sparse linear system of equations at each time step of the simulation. Depending ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007